Implementasi Sistem Prediksi Penjualan Di Butik Divva-Collection Berbasis Website Menggunakan Metode K-NN
DOI:
https://doi.org/10.36350/jbs.v16i1.335Keywords:
K-NN, Website, MAPE, Sales PredictionAbstract
This study aims to build a website-based sales prediction system at the Divva-Collection Boutique using the K-Nearest Neighbor (K-NN) method. The data used are monthly sales data from several fashion products during the period January 2024 to April 2025. The K-NN method is applied with the Chebyshev distance approach to calculate the closeness between historical data. The K value used is K = 3 because it provides the best level of accuracy based on the test results. The process is carried out by calculating the average of the K nearest neighbors to produce a sales prediction value. Evaluation of the prediction results using the Mean Absolute Percentage Error (MAPE) method shows that all MAPE values are below 10%, with an accuracy level reaching 90%, both from manual calculations using Excel and from the system built. These results indicate that the system has good accuracy and is suitable for use as a tool in sales decision making at the Divva-Collection Boutique.
Downloads
References
[1] R. Bahtiar, “Implementasi Data Mining Untuk Prediksi Penjualan Kusen Terlaris Menggunakan Metode K-Nearest Neighbor,” J. Inform. MULTI, vol. 1, no. 3, pp. 203–214, 2023.
[2] I. Kanedi and J. Jumadi, “Implementasi Machine Learning Untuk Prediksi Penjualan Oli Shell Pada CV . Harapan Karya Mandiri Bengkulu,” vol. 20, no. 2, pp. 534–541, 2024.
[3] A. Gadi Ana Amas, G. Kopong Pati, F. Ema Ose Sanga, T. Informatika, and S. Stella Maris Sumba, “JESCE (Journal of Electrical and System Control Engineering) Penerapan K-Optimal Pada Algoritma KNN Untuk Prediksi Kelulusan Tepat Waktu Mahasiswa Program Studi Teknik Informatika Application of K-Optimal in the KNN Algorithm to Predict Timely Graduation ,” Jesce, vol. 7, no. 2, pp. 92–97, 2024, doi: 10.31289/jesce.v6i2.10536.
[4] M. N. Maskuri, K. Sukerti, and R. M. Herdian Bhakti, “Penerapan Algoritma K-Nearest Neighbor (KNN) untuk Memprediksi Penyakit Stroke Stroke Desease Predict Using KNN Algorithm,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 4, no. 1, pp. 130–140, 2022.
[5] V. Ariyani, P. Putri, A. B. Prasetijo, and D. Eridani, “Perbandingan Kinerja Algoritme Naïve Bayes Dan K-Nearest Neighbor (Knn) Untuk Prediksi Harga Rumah,” J. Ilm. Tek. Elektro, vol. 24, no. 2, pp. 162–171, 2022.
[6] M. K. Alfin, A. Alim Murtopo, and N. Fadilah, “Penerapan Metode Clustering untuk Prediksi Produksi Bawang Merah (Ensemble K-Nearest Neighbors),” Ijir, vol. 3, no. 2, pp. 30–37, 2022.
[7] D. S. Seruni, M. T. Furqon, and R. C. Wihandika, “Sistem Prediksi Pertumbuhan Jumlah Penduduk Kota Malang menggunakan Metode K-Nearest Neighbor Regression,” Sist. Prediksi Pertumbuhan Jumlah Pendud. Kota Malang menggunakan Metod. K-Nearest Neighbor Regres., vol. 4, no. 4, pp. 1075–1082, 2020.
[8] I. Nawangsih and S. Fauziah, “Prediksi Pengangkatan Karyawan Dengan Metode Algoritma C5.0 (Studi Kasus Pt. Mataram Cakra Buana Agung),” Pelita Teknol., vol. 16, no. 2, pp. 24–33, 2021, doi: 10.37366/pelitatekno.v16i2.672.
[9] M. Y. Nugroho, “Implementasi Prediksi Penjualan Powderindo Menggunakan Metode Single Moving Average,” vol. 5, pp. 2159–2168, 2025.
[10] S. Noris and Y. Ardiyansyah, “ANALISA DATA MINING UNTUK PREDIKSI PENJUALAN PRODUK TERLARIS MENGGUNAKAN METODE K-NEAREST,” vol. 9, pp. 170–177, 2025.
[11] W. Styorini, A. Pratiwi, and C. Widiasari, “Identifikasi Tingkat Kesegaran Ikan Berbasis Android,” J. Amplif. J. Ilm. Bid. Tek. ELEKTRO DAN Komput., vol. 12, no. 1, pp. 12–18, 2022, doi: 10.33369/jamplifier.v12i1.19174.
[12] D. M. Steven Ryan Darmawan,Muhamad Fatchan, “PREDICTION OF 2024 PRESIDENTIAL ELECTION USING K-NN WITH METRIC APPROACHES CHEBYSHEV AND EUCLIDEAN BASED ON TWITTER DATA INVESTIGATION PENDEKATAN METRIK CHEBYSHEV DAN EUCLIDEAN BERBASIS,” vol. 5, no. 2, pp. 475–485, 2024.
[13] A. F. Sallaby and I. Kanedi, “Perancangan Sistem Informasi Jadwal Dokter Menggunakan Framework Codeigniter,” J. Media Infotama, vol. 16, no. 1, pp. 48–53, 2020, doi: 10.37676/jmi.v16i1.1121.
[14] R. Hermiati, I. Kanedi, and A. P. E-commerce, “PEMBUATAN E-COMMERCE PADA RAJA KOMPUTER MENGGUNAKAN BAHASA,” vol. 17, no. 1, pp. 54–66, 2021.
[15] M. A. Noor Safitri Mianti, Sri Hartati, “MEMBUAT WEBSITE UPTD PUSKESMAS BATUMARTA II MENGGUNAKAN PHP & MYSQL Noor,” vol. 14, no. 1, pp. 82–88, 2023.
[16] I. Nabillah and I. Ranggadara, “Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut,” JOINS (Journal Inf. Syst., vol. 5, no. 2, pp. 250–255, 2020, doi: 10.33633/joins.v5i2.3900.
[17] M. N. A. Wahyudi and C. W. B. M. S. Bin Bakara, “Soil Temperature and Moisture Forecasting Using Exponential Smoothing Method Based on Mean Absolute Percentage Error,” jurnal.uns.ac.id, 2024.
[18] S. Mujilahwati and L. D. Windasari, “Implementasi Metode k-Nearest Neighbor (k-NN) untuk Memprediksi Penjualan Buah di Indonesia berbasis Website,” Semin. Nas. Teknol. Sains, vol. 3, no. 1, pp. 7–14, 2024, doi: 10.29407/stains.v3i1.4077.
[19] F.- Sonata, “Pemanfaatan UML (Unified Modeling Language) Dalam Perancangan Sistem Informasi E-Commerce Jenis Customer-To-Customer,” J. Komunika J. Komunikasi, Media dan Inform., vol. 8, no. 1, p. 22, 2019, doi: 10.31504/komunika.v8i1.1832.
[20] J. O. A. Putri and M. G. Rohman, “Sistem Pakar Diagnosa Penyakit Influenza Dengan Menggunakan Metode Naive Bayes Berbasis Web,” Gener. J., vol. 7, no. 3, pp. 84–92, 2023, doi: 10.29407/gj.v7i3.21056.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 TeknoIS : Jurnal Ilmiah Teknologi Informasi dan Sains

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.







