Penerapan Metode Naive Bayes Untuk Rekomendasi Pemilihan Asisten Laboratorium Komputer Di Perguruan Tinggi
PDF

Keywords

Computer Laboratory Assistants
Recommendation
Naive Bayes
Percentage
Confussion Matrix.

How to Cite

Penerapan Metode Naive Bayes Untuk Rekomendasi Pemilihan Asisten Laboratorium Komputer Di Perguruan Tinggi. (2022). TeknoIS : Jurnal Ilmiah Teknologi Informasi Dan Sains, 12(2), 127-138. https://doi.org/10.36350/jbs.v12i2.138

Abstract

Binaniaga Indonesia University is one of the universities in the city of Bogor, just like other university in the learning process, computer laboratory assistants are often found whose job is to assist in providing appropriate directions to students who have difficulty during learning. Based on the results of interviews that have been conducted, there are indications that students who have been selected to become computer, laboratory assistants in the previous period, namely their performance is less than optimal, seen in daily life when assisting practicum courses in the computer laboratory, namely not providing the direction needed by practitioners who experience obstacles or difficulties, and also not optimal in terms of time while working in the computer laboratory. in this study, it can provide recommendations for selection of computer laboratory assistants to minimize errors in choosing computer laboratory assistants by applying the Naive Bayes method. The variables use is based on academic fields such as attendance, GPA (Gradual Achievement Index), the value of programming fundamentals courses, the value of programming language 1 or web systems and technology courses, and semester. The percentage of accuracy test results obtained by using the confussion matrix is the accuracy of 95.31%.

PDF

References

F. Gorunescu. 2011. Data Mining Concept, Models and Techniques. Verlag Berlin Heidelberg: Springer.

Ghaniy, R., & Sihotang, K. (2019). Penerapan Metode Naïve Bayes Classifier Untuk Penentuan Topik Tugas Akhir. Teknois : Jurnal Ilmiah Teknologi Informasi dan Sains, 9(1), 63-72. doi:https://doi.org/10.36350/jbs.v9i1.7

Ibrahim, 2007. Pengertian Laboratorium Komputer. https://smpalmuttaqin.sch.id/site/fasilitas/lab-komputer/, diakses tanggal 21 Desember 2020.

Nofriansyah, Dicky. 2015. Algoritma Data Mining dan Pengujiannya. Yogyakarta: CV. Deepublish.

Prasetyo, Eko. 2013. Data Mining Konsep dan Aplikasi Menggunakan Matlab. Yogyakarta : Andi.

Saputra, D., & Mustofa, A. (2022). Penerapan Metode Naïve Bayes untuk Evaluasi dan Menentukan Dosen yang Maksimal. Teknois : Jurnal Ilmiah Teknologi Informasi dan Sains, 12(1), 67-78. doi:https://doi.org/10.36350/jbs.v12i1.131

Suyanto. 2017. Data Mining Untuk Klasifikasi dan Klasterisasi Data. Bandung: Informatika Bandung.

Tan, P.N., Steinbach, M.,Kumar,V.(2006).Introduction to Data mining. Boston: Pearson Education

Triawan, A., & Lintang Melinda, D. (2020). Penerapan Metode Naïve Bayes Untuk Rekomendasi Topik Tugas Akhir Berdasarkan Daftar Hasil Studi Mahasiswa di Perguruan Tinggi. Teknois : Jurnal Ilmiah Teknologi Informasi dan Sains, 10(2), 58-70. doi:https://doi.org/10.36350/jbs.v10i2.91

Utari, L., & Ulfah, Y. (2021). Penerapan Metode Naïve Bayes untuk Prediksi Minat Baca Berdasarkan Usia. Teknois : Jurnal Ilmiah Teknologi Informasi dan Sains, 11(1), 67-74. doi:https://doi.org/10.36350/jbs.v11i1.104

Van Blerkom, M. L. 2009. Measurement and statistics for teachers. In Measurement and Statistics for Teachers. https://doi.org/10.4324/9781315464770

Downloads

Download data is not yet available.