Penerapan Algoritma Naive Bayes Untuk Penentuan Balita Penerima Makanan Tambahan (PMT) Berdasarkan Status Gizi Di Pos Pelayanan Terpadu

Derman Janner Lubis - [ https://orcid.org/0000-0001-9272-1558 ]
Gemilang Karunia Gusti

Abstract

This study aims to determine toddlers who are classified as toddlers who are eligible to receive assistance as recipients of additional food (PMT) based on the nutritional status of toddlers. A toddler does not get nutrition in a balanced amount, malnutrition can occur, and the toddler himself will have stunted growth, so the problem I raised is that toddlers who are affected by malnutrition will be assisted by the Health and Posyandu in the Supplementary Feeding program (PMT) so that the nutrition of infants affected by malnutrition can be assisted in their recovery. This research was carried out from April to June 2022, located at Posyandu Melati, Kelurahan Margatunggal, Kecamatan Jayaloka, Musi-Rawas, South Sumatra. In this research, an application is made that can provide determination of eligible toddlers as recipients of additional food (PMT) to minimize errors in choosing toddlers who deserve this assistance by applying the Naive Bayes method. The variables used were based on the nutritional status of toddlers such as gender, nutritional status, weight based on age, nutritional status, height based on age, nutritional status, weight based on height, status of toddlers receiving additional food. % and is interpreted as very feasible while the results of the user eligibility percentage are 88.48%, then related to the application made can be categorized into a very feasible interpretation. And an accuracy test has also been carried out using a confusion matrix with 96% accuracy results.

Keywords

Naive Bayes; Algoritma; SPK; Gizi; Akurasi.

References

Rahmawati, N., & Novianto, Y. (2020). Klasifikasi Kondisi Gizi Balita Menggunakan Metode Naive Bayes (Studi Kasus Posyandu Melati IV). In Jurnal Ilmiah Mahasiswa Teknik Informatika (Vol. 2, Issue 3)

Saputra, D., & Mustofa, A. (2022). Penerapan Metode Naïve Bayes untuk Evaluasi dan Menentukan Dosen yang Maksimal. TeknoIS : Jurnal Ilmiah Teknologi Informasi dan Sains, 12(1), 67-78. doi:https://doi.org/10.36350/jbs.v12i1.131

Ghaniy, R., & Sihotang, K. (2019). Penerapan Metode Naïve Bayes Classifier Untuk Penentuan Topik Tugas Akhir. TeknoIS : Jurnal Ilmiah Teknologi Informasi dan Sains, 9(1), 63-72. doi:https://doi.org/10.36350/jbs.v9i1.7

Triawan, A., & Lintang Melinda, D. (2020). Penerapan Metode Naïve Bayes Untuk Rekomendasi Topik Tugas Akhir Berdasarkan Daftar Hasil Studi Mahasiswa di Perguruan Tinggi. TeknoIS : Jurnal Ilmiah Teknologi Informasi dan Sains, 10(2), 58-70. doi:https://doi.org/10.36350/jbs.v10i2.91

Hawari, M. Sinaga, B. (2019), "Naïve Bayes Algorithm Implementation To Predict Gum Production at PT. Sri Rahayu Court", Jurnal Mantik, Vol 3 No 3, November 2019

Fauzi, R. Cholissodin, I. Rahayudi, B. (2021), "Pemanfaatan Spark untuk Analisis Sentimen Mengenai Netralitas Berita dalam Membahas Pemilu Presiden 2019 Menggunakan Metode Naive Bayes Classifier", Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, VOl 5 No 3, Maret 2021

Hairani. Nugraha, G. Abdillah, M. Innudin, M. (2018), "Komparasi Akurasi Metode Correlated Naive Bayes Classifier dan Naive Bayes Classifier untuk Diagnosis Penyakit Diabetes", InfoTekJar (Jurnal Nasional Informatika dan Teknologi Jaringan), Vol 3 No 1, September 2018

Reny, W. Sukma, P. Fajri, K. (2020), "IMPLEMENTASI TEOREMA NAIVE BAYES PADA ANALISA DAN PREDIKSI BIDANG PEKERJAAN ALUMNI PRODI TEKNIK INFORMATIKA STMIK NURDIN HAMZAH JAMBI", FORTECH (Journal of Information Technology), Vol 4 No 1, April 2020

Rachmadany, A. Pranoto, Y. Gunawan. (2020), "Classification of Words of Wisdom in Indonesian on Twitter Using Naïve Bayes and Multinomial Naive Bayes", Academia Open, Vol 3 Oktober 2020

Bahtiar, A. (2019), "KLASIFIKASI KETEPATAN WAKTU PEMBAYARAN SPP DI PONDOK PESANTREN AL-ARIFAH MENGGUNAKAN ALGORITMA NAIVE BAYES", KOPERTIP: Jurnal Ilmiah Manajemen Informatika dan Komputer, Vol 3 No 2, Juni 2019

Article metrics

Abstract views : 284 | views : 230

Refbacks

  • There are currently no refbacks.